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INTRODUCTION 

Th i s  pape r  contains a fu r the r  statist ical  ana lys i s  of s imulated USB stat ic  dopp- 

l e r  t racking data. The use  of the GSFC Apollo Centralized Computer System, 

the cooperation of station personnel  at Guam, and the init ial  es tabl ishment  of 

t e s t  p a r a m e t e r s  were  a l l  a r r anged  by George Q. Clark  of the Manned Flight 

Support Office. 

July 7, 1966. 

so that the  result ing signal effectively s imulated ze ro  doppler frequency. 

doppler measu remen t s  w e r e  made in  t he  des t ruc t  mode a t  a sampling r a t e  of 10 

p e r  second and recorded  in units of cm. p e r  second. 

was  50 cps  throughout th i s  tes t .  

The data under considerat ion were  received f r o m  Guam on 

The t r a n s m i t t e r  output was  t r ans l a t ed  in frequency and attenuated 

The 

The r ece ive r  bandwidth 

The data were  taken in a number of "runs".  

p l e s  of observat ions:  the f i r s t  taken a t  -132dbm (approximately 16 db above 

threshold),  the second a t  -134dbm, etc. in s t eps  of 2 db until threshold was  

reached. 

-132 dbm. 

Each run consis ted of s e v e r a l  sam-  

Then observat ions w e r e  taken in the same  s t eps  of 2 db back up to 

The number of observations in each step var ied  f rom 30 to  1000. 

The l a rge  amount of data provided an  opportunity t o  investigate empir ica l ly  the 

underlying probability distribution of the dopple r data. 

u sed  t o  determine how well the data followed a Gaussian distribution. 

pected f r o m  previous work [ 1 ] f o r  high S / N  the distribution i s  very  near ly  

Gaussian,  but f o r  lower S / N  it departs significantly f r o m  it. In the light of the 

findings a model based  on a contaminated Gaussian distribution i s  suggested t o  

desc r ibe  the distribution at t h e  lower S / N ,  and the problem of e s t ima t ing  the 

mean (bias)  and d ispers ion  o r  precis ion of the observat ions i s  d i scussed  f o r  this  

model. 

Probabi l i ty  plots w e r e  

As ex- 
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A GRAPHICAL TEST FOR NORMALITY 

PROBABILITY PLOTS 

A s imple  but effective graphical method to  de te rmine  whether a random sample  

of measu remen t s ,  x 1' x2, ...., x departs  f r o m  a Gaussian distribution, 
n 

is t o  plot the sample  on no rma l  probability paper.  

f r o m  s m a l l e s t  t o  l a r g e s t  value,  letting x 

smallest, etc. The o rde red  sample  values ,  

The sample  is first o rde red  

x(2) the ne* 
be  the sma l l e s t  value. 

(1 1 

are cal led the o r d e r  s ta t i s t ics  of the sample.  

t h  
is plotted on the ver t ica l  axis  of no rma l  probability 

x(i)* 
The i o r d e r  s ta t is t ic ,  

pape r  vs on the horizontal  axis  f o r  i = 1, . . . , n. The horizontal  ax is  of 

the graph  paper  is scaled f r o m  0 to  1 by stretching out the tails n e a r  0 and 1 so 

that a reasonably "good" sample f rom a Gaussian distribution plots m o r e  o r  l e s s  

along a s t ra ight  line. 

points f r o m  a sample  will deviate f rom the theoret ical  s t ra ight  line, but f o r  

l a r g e  samples ,  the l inear  tendency is  unmistakable.  

at -132 dbm (Step 0) for  Run 2 of the July 7th data as  plotted in F igure  3 c lear ly  

seem to  come f r o m  a distribution that is v e r y  close to Gaussian. 

i 
n t l  

Because  of the randomness  of r e a l  measu remen t s ,  the 

F o r  example,  the readings 

Depar tures  f r o m  normal i ty  show up in probability plots a s  non-linearit ies.  F o r  

example,  if the sample  i s  f r o m  a rectangular distribution (dashed line, F igure  1 )  

instead of a Gaussian (solid l ine),  the plot will r e s e m b l e  an "S" curve  (dashed 

l ine,  F igure  2)  instead of the straight line f o r  the Gauss ian  since the ex t r eme  

2. 
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Figure  1 
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Figure 2 

measuremen t s  a r e  not as far  out a s  they would be for the Gaussian.  

other  hand, if  the sample  comes f rom a distribution with m o r e  probability 

on the ta i l s  than a normal ,  f o r  example, a Cauchy distribution, 

On the 

, - m < x < m  
1 1 

2 f (x)  = - 
IT 

l - t ( X - P )  

The  plot will  have a r e v e r s e d  "S" shape (dotted l ine,  F igu re  2). 

the Cauchy density function looks very much like the no rma l  cu rve  when 

graphed, t he re  is considerably more  probabili ty way out on the ta i l s  so 

that  the chance of ex t remely  l a r g e  or s m a l l  readings is much g r e a t e r .  

Although 

3. 



I 
I Hence, the  r e v e r s e d  "S" shape of the probabili ty plots. 

CONTAMINATION MODELS 

Quite often sampie  data  is basically Gaussian except that  it i s  contaminated 

by a few ( o r  many)  measu remen t s  f rom some  other  distribution. 

some of the measu remen t s  a r e  influenced by unusual e r r o r s  caused  by any- 

thing f r o m  bursts  of noise in a circui t  t o  blunders  in reading a dial .  These  

measu remen t s  a r e  called contaminants and c a r r y  misleading information 

about the value being estimated. 

outrageously l a rge  o r  small readings,  which can s imply be d iscarded  

before  using the data. 

are difficult to  identify. 

One s imple  contamination model is given by the density function 

That is, 

Sometimes they show up as out l ie rs ,  i.e. 

More  often they a r e  mixed in with the  good data  and 

- m < x < m ,  

where  0 

cent  of the measu remen t s  a r e  "good", i. e. come f r o m  the p r i m a r y  Gaussian 

dis t r ibut ion with s tandard deviation r~ but 100 per  cent of them come 

f r o m  a contaminating distribution, here  a l so  Gaussian,  but with a ve ry  

much l a r g e r  s tandard deviation a 

y < 1 , 01 >> . In this  model it i s  a s sumed  that 100 (1-y) per  
0 

0 ,  

1'  

For example,  if y =. 01 and u 100 , a sample  of s i ze  100 f r o m  this  
1 0 

dis t r ibut ion typically will appear  to be quite no rma l  except perhaps  1 o r  

2 ext remely  l a rge  o r  smal l  measurements  which obviously should be d is -  

carded  before  computing e s t ima tes  of p and u However,  if y = . 10 and 

0 

and well  mixed in with the "good" data. 

. 
0 

= 3 0 0 ,  the  problem i s  m o r e  difficult s ince  the contaminants a r e  f requent  
1 

T h e  model  above is a n  example of scale  contamination because  the contam- 

inating distribution h a s  the s a m e  mean a s  the p r i m a r y  distribution, but 

it has  a much l a r g e r  s tandard deviation. 

a t ion with non-normal  o r  even unsymmetr ic  contaminations a r e  possible.  

Other models  of sca le  contamin- 

4. 
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PROBABILITY PLOTS O F  THE J U L Y  7 DOPPLER DATA 

Probabi l i ty  plots of some  of the July 7 data a r e  given in F i g u r e s  3 through 8. 

Samples  of about 500 readings a r e  plotted for S /N  f r o m  -132 dbm (Step 0 )  to  
i 

n t l  
-146 dbm (Step 7). On each graph the point (x ( i )  , -) is labeled i 

f o r  identification. 

s p a c e  on the graph, but, for  example, in F igu re  5 the points corresponding 

t o  x 

points f o r  x 

creasing.  

Not all of the points a r e  plotted because  of the  lack of 

would fall about on a s t ra ight  l ine between the 
(51)  ' (52)  ' * . '  x(99) 

(50)' x( 100)' Also, the graph must  be monotonically in- 

At Step 0 (F igu re  4) the plot is s t i l l  r emarkab ly  s t ra ight  except for  t h r e e  

out l ie rs  x 

to x 

about the sma l l e s t  4 per  cent and the l a r g e s t  8 per  cent of the readings a r e  

not f r o m  the Gaussian distribution which s e e m s  to  cha rac t e r i ze  the r e s t  of 

them. 

Step 7 ( F i g u r e  8) only about the middle 50 pe r  cent s e e m  to be f r o m  the 

p r i m a r y  distribution. 

(25)  
By Step 4 ( F i g u r e  5 )  the points f r o m  x 

(499 ) *  
and x 

(1) ' x(498)' 
appea r  to  be  f r o m  a Gaussian distribution. At Step 6 ( F i g u r e  6) 

(498) 

This tendency inc reases  with decreas ing  signal level  s o  that by 

Even then, that middle 50  p e r  cent plots v e r y  s t ra ight .  

Thus,  as the S /N  d e c r e a s e s  the l inear shape gives way to  the inverted "S" 

shape  charac te r i s t ic  of a contaminated Gaussian d iscussed  in the previous 

section. To i l lustrate ,  a theoretical  cu rve  for  a sca le  contaminated 

Gauss ian  distribution with Y = .08, u 
Compare  this curve  with the empirical  plot in F igu re  6 and notice the 

s imi l a r i t y  . 

= 14, and u = 84 is drawn in F igu re  9. 
0 1 

ESTIMATION OF UNKNOWN PARAMETERS FROM PROBABILITY PLOTS 

As descr ibed  above, probability plots of s amples  f r o m  a Gaussian d is t r ib-  

ution tend to  follow a s t ra ight  line. 

theoret ical  line a r e  de te rmined  by the value of the mean p and the s tandard 

deviation (5, respectively,  of the distribution. The ordinate a t  which the 

The intercept  and the slope of th i s  

line c r o s s e s  the 5 0  p e r  cent abscissa  l ine will be  the mean. Also, the 

l a r g e r  the 0, the s t eepe r  the slope. 

5. 
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Accordingly,  unknown values of I.( and CJ may be est imated f r o m  empir ica l  

probabili ty plots of the sample  data. 

e i ther  by l eas t  squa res  o r  some other method. 

p e r  cent absc i s sa  l ine se rves  a s  an  es t imate  of p,  and the slope of the l ine 

when converted to proper  units is the e s t ima te  of 0. These  graphical  

e s t ima tes  based  on l eas t  square  curve f i ts  have been thoroughly studied and 

a r e  known to  have useful optimality proper t ies  [ 21.  

A line of bes t  f i t  i s  drawn to  the data,  

The intercept  of the 50 

In Figure  3 a straight  l ine i s  drawn in to  f i t  the data f r o m  Step 0. 

was  drawn simply by eye,  but it is good enough to i l lus t ra te  the ideas .  

graphical  es t imate  of (3 f r o m  this line is (3 = 5 . 6  whereas  the root mean square  

es t imate  of u computed f rom the same data i s  % = 5.479.  

dis t r ibut ion is Gaussian the computed and the graphical  es t imates  should 

a g r e e  fa i r ly  well. 

This l ine 

The 
N 

Whenever the 

For lower S / N  the observations appear to follow the contaminated Gaussian 

model ,  and a line of bes t  fit t o  a l l  of the points is no longer meaningful. 

However,  s ince the center  portion of each sample  does s e e m  to follow a 

Gaussian law (the p r imary  distribution r e f e r r e d  to above),  the ta i l s  

can  be  ignored and a l ine drawn to  fit that  cen t ra l  portion of the plots in 

o r d e r  to  es t imate  the p and u These  a r e  not 

influenced by the ta i l s  of the sample and give es t imates  of the  p a r a m e t e r s  

with l i t t l e  influence by contaminants. 

- 

of the p r i m a r y  distribution. 
0 

In Figure  10 a r e  plotted the root mean square  es t imates  of 0 computed f r o m  

the samples  for  the var ious s teps  in the second run of July 7. 

plotted with ' I .  'E.''. 

pected the graphical  es t imates  a r e  much lower than the computed root m e a n  

squa re  es t imates  for  the lower S / N .  

These  a r e  

As ex-  Plotted by 'lx'sl' a r e  the graphical  es t imates .  

6 .  
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At this juncture  seve ra l  conclusions should be noted. 

I )  F o r  low S / N  the  sua! cs t ima tes  of i;. arid ;i coiiiputed 
f r o m  the  data ,  i. e. x=sample mean  and s=sample  root 
mean  square  e r r o r ,  can be inefficient and misleading. 
x i s  s t rongly affected by a wild measu remen t ,  especial ly  
when the sample  contains a sma l l  number of readings,  
and can eas i ly  give a bad es t imated  value. F o r  example,  
i f  five readings a r e  to  be  averaged ,  then one wild 
contaminant among the five can overshadow the other  
four.  

- 

- 

Also, if  s is used to  es t imate  the scat ter  of the data  (and hence the prec is ion  

with which p is known) wild readings will make  i t  appear  that l e s s  prec is ion  

is possible  than rea l ly  is. 

c e r t a i n  portion of the readings a r e  f rom the p r i m a r y  Gaussian dis t r ibut ion 

which has  a much s m a l l e r  s tandard deviation, 0 , than the value s gives .  

If t hese  readings can be weighted more heavily in es t imat ing p than the 

contaminants a r e ,  then the s tandard e r r o r  of es t imat ion would be c loser  

to  (J / fi than to s / 6 .  

fully chosen es t imates  of U ,  t o  know i t s  value with be t te r  prec is ion  than the 

value of s indicates.  

F r o m  the probabili ty plots i t  is c l ea r  that  a 

0 

Thus ,  it should be  possible ,  by the u s e  of c a r e -  
0 

2 )  On the other  hand, the precision possible  in es t imat ing p 
will never  be a s  good a s  if t he re  were  no contaminants.  
This  is  c l ea r  fo r  two reasons .  F i r s t ,  the contaminants 
a r e  essent ia l ly  wasted measu remen t s ,  and second, even 
m o r e  information i s  lost because  one does not know which 
of the readings a r e  "good" and which a r e  "bad". 

To s u m m a r i z e  these two points with an example consider  Step 6. 

e s t ima te ,  s ,  is about 82.  

e s t ima te  of p will be about 8 2 1  6, where n i s  the  number of readings to  be  

averaged  for  X. 

the p r i m a r y  Gaussian distribution i s  about 20 ,  

contamination, Ywcu ld  have a standard e r r o r  of about 2 0 1  m, about four 

t i m e s  be t te r  than 821  6. 
es t imated  will b e  l e s s  than 8 2 1  Jir but g r e a t e r  than 2 0 1  fi. 

The r .m. s .  

F r o m  this i t  follows the s tandard  e r r o r  of 2 a s  a n  

However, the graphical e s t ima te  of the s tandard deviation of 

Thus,  i f  t he re  w e r e  no 

The precision with which !I can actual ly  be  

How c lose  i t  is 

7. 



to 201 fi depends on y ,  the proportion of contaminants ,  and the r a t io  CJ 10 . 
1 0  

3 )  Hence, the problem is t o  find an es t imate  of p which 
makes  reasonably efficient u s e  of the information in 
the readings yet which is not se r ious ly  dis turbed by 
contamination. A short  discussion of the s ta t i s t ica l  
pr inciples  involved is given in  the next section. 

R O B U S T  ESTIMATION 

If a sample  of s i ze  n, x l ,  . . . , x f r o m  a Gaussian distribution with mean  
3 

n 
L, 

p ,  var iance  u 

sample  mean,  7, has no se r ious  competitor.  

computed f r o m  the data to  es t imate  1.1 (e. g. sample  median,  sample  mid range )  

is relat ively inefficient, i. e . ,  wasteful of information. 

is to  be  used to  es t imate  the unknown value of p, then the 

Any other  sample  s ta t i s t ic  

If, however ,  the sample  i s  f r o m  another dis t r ibut ion,  fo r  instance a Cauchy 

(which looks very  much like a normal  cu rve  when graphed) ,  then X is not a 

good e s t ima te  of p.  

l ikely that t h e r e  is a measu remen t  s o  wild that i t  completely dominates  the 

r e s t  c a u s i n g z  to  be  far f r o m  the true value of p. F o r  the Cauchy d i s -  

t r ibut ion the sample  median is a far  be t t e r  e s t ima te  of p than3T s ince  it 

is not as influenced by ex t remely  large o r  sma l l  readings.  To a lesser 

extent the s a m e  holds t r u e  for  the scale  contaminated Gaussian model  

d i scussed  above. 

In any sample  of measu remen t s  f r o m  a Cauchy i t  is 

Thus,  the worth of any sample  s ta t is t ic  a s  a n  est imat ion of a p a r a m e t e r  

depends on what dis t r ibut ion is being sampled ,  and a given sample  s ta t i s t ic  

m a y  be the best  possible in one case and a lmost  wor th less  in another .  

a statisti.:  o r  es t iniate  is useful o v e r  a range uf d is t r ibut ions,  i t  is said 

to  be robust .  F o r  example,  although the sample  m e d i a n  i s  not the bes t  fo r  

e i the r  the no rma l  o r  the Cau\.hy, i t  is reasonably good for  e i ther  and hence 

is robust  over  these  two distributions.  

If 

By using the median instead of 
- x one t r ades  some  efficiency i n  sampling f rom Gaussian for safety in c a s e  the 

a .  
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distribution is not rea l ly  Gaussian but perhaps Cauchy-like instead. 

W i t h  the doppler data under consideration the estimation problem s e e m s  t o  

be that the b i a s ,  p,  must  be estimated f r o m  data that is somet imes  ve ry  

nea r ly  Gaussian (high S / N )  but at other t i m e s  may be l ike a sca l e  contamin- 

ated Gaussian (lower S / N ) .  

p rope r t i e s  : 

T o  b e  useful a n  est imate  of u m u s t  have two 

a) If the data  is Gaussian, the  e s t ima te  must  be  reasonably 
efficient. That is, there  m u s t  be  no se r ious  waste  of 
information when compared with the bes t  e s t ima te  X. 

b )  If the data is contaminated Gaussian,  the e s t ima te  m u s t  
be  relatively uninfluenced by wild m e a s u r e m e n t s .  
this c a s e  i t  mus t  b e  sufficiently supe r io r  to  X to  justify 
the lo s s  of efficiency in a).  

In 

Several  types of e s t ima tes  which possess  these  p rope r t i e s  a r e  the t runcated 

means ,  Winsorized means ,  and the Hodges-Lehman s t a t i s t i c s  [ 31,  [ 4 ] ,  

[53 ,  [61.  

Truncated m e a n s  are  computed by censoring ex t r eme  sample values be fo re  

averaging. F o r  example,  suppose the orbit  determination p r o g r a m  r e q u i r e s  

an input eve ry  second and readings in the non-destruct mode c a n  he taken 

as often as eve ry  1110th second. 

would be  t o  u s e  X, i. e . ,  take the ten 1 /  10th second readings and ave rage  

them. (This  is equivalent to taking just one 1 second reading. ) Another 

method would be to take  the t en  1 / 10th second readings,  d i sca rd  the s m a l l e s t  

and the l a r g e s t  and ave rage  the  middle eight. 

t runcated mean,  7 

a r e  censored).  

middle s ix  observat ions,  the 2 0  pe r  cent truncatc,d m e a n y  

One way t o  specify the input to  the p r o g r a m  

This is called a 10 p e r  cent 

(i.  e . ,  10 per cent of t h e  observations on each end 

If the contamination is s e v e r e ,  then the ave rage  of the 

could be  used. 
( . 20 ) ’  

It is well known tha t% is  the most  efficient e s t ima te  for the mean of a 

9. 



Gauss ian  distribution for  the case  of uncontaminated data ,  but i f  t h e r e  is 

s o m e  contamination, then X lo ses  efficiency and the t runcated means  a r e  

be t te r .  

c i e s  of means  with var ious amounts of truncation. 

h e r e  f r o m  [ 3 ] ,  is based on a sca l e  contaminated Gaussian model  with 

(3 = 3 0  . Truncated means  for  finite sample  s i zes  will exhibit s imi la r  

cha rac t e r i s t i c s .  

F igure  11 is a graph  of the asymptotic ( l a rge  sample)  efficien- 

The graph,  reproduced 

1 0 

Notice that even when the data is not contaminated, 

little efficiency is lost  by using a truncated mean instead of X. 

g raph  i t  can be seen  that the asymptotic efficiency of F 

p e r  cent in the non-contaminated case. 

m e a n  that as much information is obtained about the unknown p a r a m e t e r  

p f r o m  97 observat ions using 3 a s  f rom 100 observat ions using X 

= 0, surpr i s ing ly  

F r o m  the 

is about 97 
( .  0 6 )  

This efficiency can be in te rpre ted  to  

(. 0 6 ) '  

Therefore ,  ve ry  l i t t le efficiency i s  lost  by using these  "safe" e s t ima tes  

when they a re  not rea l ly  needed. 

i t  can  be  seen  f r o m  F igure  11 that the t runcated means  will p e r f o r m  much 

be t te r  t h a n y .  With only 3 per  cent contaminat ionx  becomes  as 

efficient as Y. 

good as y. 

However, when contamination i s  present ,  

(.  0 6 )  
With about 9 per  cent contamination even the median is as 

The  graph  in F igu re  11 is for  u 

amount  of contamination is g r e a t e r  and u 

For th is  c a s e  the efficiency of Z will fall off s t i l l  m o r e  rapidly than in 

F i g u r e  11. General ly ,  the m o r e  severe  the contamination, (i. e . ,  e i ther  

y l a r g e r ,  u /U l a r g e r ,  o r  both) the g r e a t e r  the amount of censoring that  

should be used. This  is done, of course,  at the pr ice  of dec reased  

efficiency in the noncontaminated case. 

= 30 . In the doppler data a t  Step 6 the  

i s  approximately equal t o  60 . 1 0 

1 0 

1 0  

The  Winsorized means ,  and m o r e  general ly ,  the e s t ima tes  based  on weighted 

10. 
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l i nea r  combinations of the o r d e r  s ta t is t ics ,  along with the Hodges-Lehman 

type s ta t i s t ic  a r e  a l i t t le  m o r e  complicated to  explain than the t runcated 

m e a n s  but exhibit s imi l a r  usefu l  propert ies .  Jus t  which one is the bes t  

depends on s e v e r a l  fac tors ,  especially how much and what kind of con- 

taminat ion ( o r  other  non-Gaussian da ta )  i s  expected,  and what the cost  o r  

loss functions a r e  for  bad est imates  under the var ious  conditions. If, for  

example,  the loss of efficiency in the high S / N  c a s e  is of minor  concern 

compared  to  the cos t  of a bad est imate  a t  lower S / N ,  then the  2 0  per  cent 

t runca ted  mean will be p r e f e r r e d  to the 10 pe r  cent  t runcated mean.  

SUMMARY A N D  CONCLUSION 

In th is  r epor t  samples  of simulated doppler t racking data with ze ro  b ias  

w e r e  analyzed to  de te rmine  charac te r i s t ics  of the  e r r o r  distribution. It 

was  found that,  although for high S I N  the e r r o r  dis t r ibut ions a r e  near ly  

Gaussian,  fo r  lower S / N  they depart  significantly f rom the Gaussian and 

follow m o r e  closely a sca le  contaminated Gaussian.  The model  could b e  

ref ined fur ther ,  but the use of the scale contaminated Gaussian suffices 

to  de te rmine  the relat ive m e r i t  of various e s t ima tes  of the  b ias .  

The  usua l  e s t ima te ,  the sample mean, i s  not recommended because i t  has  a 

s e v e r e  lo s s  of efficiency in the presence  of s ca l e  contamination. 

o ther  types of es t imates  which a r e  known to be robust  for  contaminated 

dis t r ibut ions a r e  suggested.  

- 

Several  

Specific recommendat ions as  to the best  e s t ima tes  depend on the following 

items : 
- 

1 )  The data  used in this r epor t  w e r e  obtained on one 
occasion f r o m  one tracking station. Before any 
application of the model suggested here in  can b e  
made,  it is necessary  t o  obtain da ta  f r o m  other  
s ta t ions on other  occasions to  s e e  i f  the  c h a r a c t e r -  
i s t ics  of this  data a re  typical.  

11. 



2 )  The requirements  of the orbit  determination p r o g r a m  
will s e t  r e s t r i c t ions  on what kind of e s t ima tes  can be 
used. The number ~f d q p l c r  data samples  available t o  
provide one input to the p r o g r a m  will strongly influence 
the choice of estimate.  

3 )  A knowledge of the l o s s  o r  cos t  functions associated with 
the doppler estimation is needed s o  that  a n  optimum 
es t ima to r  may be determined f o r  all S / N  ra t ios  tha t  a r e  
likely to be  encountered during the actual mission. 

12. 
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Î  . , . .  . . . .  
. . 1 .  

. , , .  

. . . .  
_I 

e * .  . 
I , ,  

1 3 . .  

t : . .  . . . .  
L_ 

. . . .  

. . . .  

- . . .  
. .  

-- 

. ,  

. I  

I .  
i . ,  

'L." - . , .  . /  

I . .  
, I  . .  

I . .  . 
---.*A- 

- 1  - 
. I  . .  I 

. 
I "  

:I::: 

. . . .  
I .  * .  . . . . .  
. . . .  . . . .  . . . .  . . . .  - . . . .  
. . . .  . . . .  
. . . .  
*- 

. . . .  

. . .  

- 
, . .  

. .  

. . .  

. . .  , , . . I :  : :  
iyt r  1 . . . . . . .  
. , . . . . . .  . . . .  . .  . I : : : .  . . . . . . . .  

i% . . . .  
. . .  

. .  
I 

. I  

3 , I '  

I 
I 

Qt 
- ,  I 

0 

0 
8 



. . .. 

- 

i . ...d 
' 8  

, 
. I  

I 

{ 

i 
1 .. ._ 

_c_ , +--*-- 

-I 

i' 
4 

i 

f 
i 
I 



: -1 
i 
I 

i ! I .  . - 
. I  

1 .  
I .  . 

. .... . . I  : I  
. . . .  
8 .  

. I .  

I 
..-. -- 

. . , . . .  
. .  . I _ . .  

- 
. .  

, , . .  
I_ 

. . . .  

. . .  

. . . .  . . . .  
II . , . .  . . . .  
. . , .  . . . .  - . . .  . .  
, .  

. . .  . , . !  
, j t i  . . .  

. 4  . I  L t 4 1 . . .  I . . . ,  : : : I : : ; !  . . . . . . .  
. . 1 . . . .  
. .  1 .  , .  

.:! 
.. .- . .  - 
3y I , . ,  

. . .  4 . . . .  
. . .  . . . ,  . . . .  - 1 .  , .  

1 .  
--I . .  , , . .  

' i t  
- .%?- 

1 a\ 
... - .... 

. . . . . . . .  - 

--.I--.-- 

! 
. . .  , : I :  :'7 

--A -.I 

. I  . .  
. , . ,  

. ! I , : : ;  
. -- 

. . .  , . .  . .  
-.. 

. . ,  . . .  

. . .  . . .  
-i_L . .  

. . I  

, I .  

. . .  -- 

. . I  
I .  

- ' f .  
c 

-e: 
\ Q  

I 

, . . /  . .  *- . . .  
. . .  1 ;  ; 

2 

-;I; - I  

. . . .  :I.:.. . . .  

. . . . .  
. . .  

I . . .  I 
~ 

I /  

I --+ ... 

I . I I  . . . . .  i 

I :  
: : : I , . , '  
. . . ,  . 
. .  I . . .  

0 
a 0 

1 



I 

0 : 

.- 

I 

. . .  
! 

. .  

. .  

__ 
. . .  
. . . .  

- - v  I 

. _  
R,' 

i .- - 

. .  I 

. . .  ' I  

. . . /  . .  
-L~- -. . . .  I . .  . . . .  , . .  . . . . ,  . .  . . . . , .  
_I_- . . . .  I .  

I . .  . ! : :  . . ~ .  . . . . .  . . - . I : .  . .  
_i_ I. 

. .  1 . .  

. . . .  

. . 

-- 
. .  

, . _ _  ..... 

I 

. . . . . . .  . . .  . , ; t : : :~w-:~::? 
. . . , . .  . .  1 . .  . . . . .  L 

. . . . . .  ] . . . I  ::..I 

. . . . . . .  i 1 . . .  ! :L .Li . . . . . . . . .  I .  ,:.,-; 

_ I  

0 
0 

I 
- 



I ---T - 1 1  i 
--r 

I 

1 e 

, 
i , 

~ . ~t , 
I 

..... ,.-. - 
I 

. . ~.~ 

j 

. .  
I 

I 
! 
I -- 
I w- . . . .  . . I :  

. ~ , ,  ..... ,L .  1 . 1 .  

:I+--+ 
: : :  ' I : : :  : : i ;  

. . . . . . . .  - 
. . .  . . I . ; : : l : : : .  
. . . .  I .  I . . $ ,  I 

4 . !  
I 

I . ' : ' ; :  : :  
I I I 

0 



i 

I 
I I 

I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 

1 j 

F 

IT  
t 

I 

I 

. . .  

. ---:.-[F; . . . .  I . . . .  

, .  
. I . .  . . . .  . .  . . . . . . . .  . . . . . . . . .  - .~ . . . .  . . . . . .  . . .  1 . .  

, .  

-__I 

I .  . -. - - . __ 

A- _ _  ~ 

, .  _ ,  . . . . . . .  . . . . . .  
__i . . . .  * . . . .  I . . . .  . . . .  . . . .  . .  I : . .  

- - .-.* -+-- 
. . . (  

__- , '  ': _ _  . . .  I' l l  . L 

. . .  

.. - 

. .  

I 
i .__ - 

i 
I 
! . . . . .  

L__ ..... I .  

I 

Y ' 
I - 

I I 

0 
0 0 

F 3 



I 
I + . , . .  

. . .  i 
: , : :  ! : ! I  . . . .  . * ,  

I '  . . . .  I l ! i  

T I 
I 

I , , . . / . . ,  

.-A LA---- 

; ! : : !  f : ! : ;  I : : :  ; * ! : :  ; : : :  i : ! ,  : : . ,  
I 

- 
_- 

I 
-+ 

I . . . .  I 

' , ; I  +I 
. . . . . . . .  

, . . ,  , . . ,  . . . . . . . .  

. . . . I  

. . . .  . 1 . . i . : :  . . . . . . . .  

. .  
. . . .  . .  . . . .  

~ 

. . .  

. . . .  - 

. . . .  

. . . .  

. . . .  
_I 

. . .  . . .  . . . .  . .  -- . .  

. . . .  . . .  - 

. . . .  

. . .  

. . . .  

. . .  - 

. . . .  . . . .  
I . .  . . . .  

, .  . . . i ' ,  

. . .  , . . .  . . . ,  . 

. . . . . .  

. : . . I  . . . .  :+- . . . .  
I : ' : :  : : : q  . . .  

. .  
. .  I . :  

-$7 . , .  

, . . I  . . . ,  
. . . .  I . . .  
. . . .  

. .  I . : : :  

1 I .  

........ - ... .. J;::: - 
. . . I  : ; :  . .  

. . . . . . .  . . .  , , /  

. .  
*-: . . . . . . . .  

. 1 . .  . . .  

i .  . . . .  I : : : :  

, , . :  f :  : : :  
. . . . . . . . .  , . .  - 1 . .  . .  . . .  

T: . . .  . . I  

. .  
I_t_l . . . .  I . . . . I . .  . 

. .  . . . . . . . .  . . . . . .  

. . .  I .  . . .  
, . .  . . . I '  : :  
-c- 

' ' I " '  . . .  I ' . '  . . . . . . .  
. . . . . . .  

. . .  1 . . . .  / 
. a / . , .  . . .  1 ' .  

.. . . 0 IC) 

t 
. . . . I  . . . . . .  . . a  . . . .  
-. . . . .  . . . .  . ,  I . .  I -... - . .  
. . . .  . .  . .  , 
--.. . . . .  . . . .  . .  
___~.  - 

. ,  . . . .  I 
, , .  . .  

. . . ,  . .  . . . .  I . . . .  
1 " '  

. . .  

. . . /  . .  
.- E 

; ; : : / ; : : :  
. . . .  
. . . . . .  
. . . .  , . . .  , . . .  . . .  I : : .  

. : . . I :  . : :  

+I-- . *.- . .  
. . .  . . . . . . . .  . . . .  

. . . . . .  
. . .  

. .  . ! ' . . .  

. . . .  I , . .  --* . . , , . , . 

. . . .  1 . . . .  

:T:: 

. . ,  . . 
+ . - . L  ._ . .  . 1 .  . . , . .  . . . .  1 . . .  

3-k 
. .  . I  . . . .  
. . . . . . .  

I_ 

t 
--. 

' I  

-7 - ...... A. . . .  
! I .  . . . .  

. . , /  

I_ . . .  
. . .  
. .  - . .  . .  . . .  
. . . .  
--.I 

. . . .  
. .  

. * .  . 

, . . . I .  I 

I . . ' '  

. . . . I  . . . .  

, . ; . I  . . .  

- I : 

4. 

I I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 

I I I I 

I 1 4  
I i j 



I 
I 
I 
I 
I 
I 
I. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

loo%- 

90 % 

80 % 

70 % 

I 1 I 

.oo .Ol .02 .05 IO 

FRACTION OF CONTAMINATION, y 

I ' IGURE 11 Asymptotic e f f i c i e n c y ,  for location, of t runca ted  means. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

R EF ER E N  C E S 

1. Electro-Mechanical Research ,  Inc., Report ,  "Statist ical  Analysis  
of Simulated USE3 Static Doppler Tracking Data", September ,  1966, 
Contract  NAS 5-3743. 

Blom, Gunnar,  Statist ical  Es t ima tes  and Transformed Beta-  
Variables ,  John Wiley a n d  Sons,  Inc. , New York, 1958. 

_-__ _- __ 2. 

3.  Tukey, John W. , "A Survey of Sampling f r o m  Contaminated 
Distribution", Pape r  39 (pp. 448-485) in  Contributions to  
Probabi l i ty  and Stat is t ics  (I .  Olkin et a l ,  eds.  ), Stanford 
University P r e s s ,  1960. 

4. Bickel, P. J. , "On Some Robust Es t ima tes  of Location", Ann. 
of Math. Stat. 36,  1965, pp. 847-858. - ~ -  

5. Huber ,  P e t e r  J. , "Robust Est imat ion of A Location Pa rame te r " ,  
Ann. of Math. Stat. 35,  1964, pp. 73-101. - - ___ --__ 

Tukey, John W . ,  " T h e  Future  of Data Analysis",  Ann. of Math. 
Stat. 33,  1962, pp. 1-67. 

- - ~  6 .  

7. Willke, T. A . ,  "A N o t e  on Contaminated Samples  of Size Three",  
Journa l  of Resea rch  of National Bureau of Standards 70 By 1966, 
pp. 149-151. 

- -- 

8. Sarhan, Ahmed F. and Greenberg,  Bernard  G. , (eds.  ), 
Contributions to  Order  Statist ics,  John Wiley and Sons, Inc. , 
New York, 1962. 

-_________ 


